Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res Lett ; 15(12): 124051, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35211191

RESUMO

Malaria burden is increasing in sub-Saharan cities because of rapid and uncontrolled urbanization. Yet very few studies have studied the interactions between urban environments and malaria. Additionally, no standardized urban land-use/land-cover has been defined for urban malaria studies. Here, we demonstrate the potential of local climate zones (LCZs) for modeling malaria prevalence rate (Pf PR2-10) and studying malaria prevalence in urban settings across nine sub-Saharan African cities. Using a random forest classification algorithm over a set of 365 malaria surveys we: (i) identify a suitable set of covariates derived from open-source earth observations; and (ii) depict the best buffer size at which to aggregate them for modeling Pf PR2-10. Our results demonstrate that geographical models can learn from LCZ over a set of cities and be transferred over a city of choice that has few or no malaria surveys. In particular, we find that urban areas systematically have lower Pf PR2-10 (5%-30%) than rural areas (15%-40%). The Pf PR2-10 urban-to-rural gradient is dependent on the climatic environment in which the city is located. Further, LCZs show that more open urban environments located close to wetlands have higher Pf PR2-10. Informal settlements-represented by the LCZ 7 (lightweight lowrise)-have higher malaria prevalence than other densely built-up residential areas with a mean prevalence of 11.11%. Overall, we suggest the applicability of LCZs for more exploratory modeling in urban malaria studies.

2.
Nat Commun ; 7: 10266, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756470

RESUMO

The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...